Neurogenic Bladder
Diagnosis and Management

KS Ngoo
Department of Urology, Hospital Selayang

Advanced Urology Course
UMMC-MUA Office
20 Apr 2014
Physiology of Micturition

<table>
<thead>
<tr>
<th>Anatomy</th>
<th>Function</th>
</tr>
</thead>
</table>
| Brain frontal lobe (micturition control c.) | Tonic inhibition to detrusor
Can delay voiding by stimulating pons |
| Pontine micturition center (PMC) | Stimulated to relax sphincter to void |
| Sacral spinal cord | Local voiding reflex via sacral reflex center
Cycle of detrusor filling and emptying
Injuries: detrusor sphincter dyssynergia, urinary retention (areflexia)
Can be out-ruled by higher centers |
| Peripheral nerves: sympathetic | Bladder accommodates and int urethral sphincter is closed to delay void
It inhibits parasympathetic signals |
| Peripheral nerves: parasympathetic | Bladder contracts and int urethral sphincter relaxes to void |
| Somatic nerve: pudendal nerve | Somatic nerves control: ext urethral sphincter and pelvic diaphragm: contraction if stim |
Normal physiology

Figure 1: Innervation of the lower urinary tract.
Epidemiology (1)

• Neurogenic bladder/neurogenic LUT dysfunction (NLUTD) effects depend on location and extent of neurological disease

• **Overall prevalence – no data**

• Among important causes:
 – Brain tumour: 24%
 – Dementia and geriatric patients
 • Alzheimer’s disease, occurrence of incontinence 23%-48%
 – Mental retardation: 12%-65%
 – Cerebral palsy: 30-40%
 – Spinal cord lesions: central cord lesion (incomplete Spinal cord Injury) 42% regressing to 12%
 – Basal ganglia pathology
 • 60% Parkinson patients had symptoms
• Other important causes of neurogenic LUTD:

 – Demyelination (Multiple Sclerosis): 50%-90%
 – Cerebrovascular accident: 20%-50%, decreasing prevalence with post-insult period
 – Disc disease: 28-87%
 – Spinal stenosis/spine surgery: 50%/38-60%
 – Peripheral neuropathy: ‘diabetic cystopathy’ 43-87% IDDM and 25% type 2 DM
 – HIV: 12% at advanced stage of disease
 – Iatrogenic: 50% APR colorectal surgery, 8-57% of radical hysterectomy & pelvic irradiation, ?data post radical prostatectomy
Aetiology of NLUTD

Table 1 Neurological disorders causing lower urinary tract dysfunction

<table>
<thead>
<tr>
<th>Suprapontine causes</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Degeneration: Parkinson’s disease, multiple system atrophy, Alzheimer’s disease, dementia with Lewy bodies</td>
</tr>
<tr>
<td></td>
<td>Hydrocephalus, normal pressure hydrocephalus</td>
</tr>
<tr>
<td></td>
<td>Cerebral palsy</td>
</tr>
<tr>
<td></td>
<td>Neoplasm</td>
</tr>
<tr>
<td>Suprasacral (intrapontine) causes</td>
<td>Demyelination: multiple sclerosis, transverse myelitis</td>
</tr>
<tr>
<td></td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Vascular: Arteriovenous malformations, spinal cord infarction</td>
</tr>
<tr>
<td></td>
<td>Neoplasm: metastasis, primary</td>
</tr>
<tr>
<td></td>
<td>Hereditary: Hereditary spastic paraparesis</td>
</tr>
<tr>
<td></td>
<td>Infections: tropical spastic paraparesis (HTLV-I)</td>
</tr>
<tr>
<td></td>
<td>Cervical spondylosis</td>
</tr>
<tr>
<td>Infrasacral (spinal root and peripheral) causes</td>
<td>Spina dysraphism</td>
</tr>
<tr>
<td></td>
<td>Arachnoiditis</td>
</tr>
<tr>
<td></td>
<td>Intervertebral disc prolapse</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td></td>
<td>Hereditary: hereditary motor sensory neuropathy</td>
</tr>
<tr>
<td></td>
<td>Iatrogenic: pelvic or retroperitoneal surgery</td>
</tr>
</tbody>
</table>
Pathophysiology

<table>
<thead>
<tr>
<th>Lesion location</th>
<th>Symptom complex</th>
<th>Terminology</th>
</tr>
</thead>
</table>
| Above pontine micturition center (PMC) | - Reduced awareness of bladder fullness
 - low bladder capacity
 - incontinence
 - no high bladder pressure | Uninhibited bladder |
| Between PMC and sacral spinal cord | - Detrusor sphincter dyssynergia
 - reduced bladder capacity
 - detrusor overactivity
 - incontinence | Upper motor neuron bladder |
| Sacral cord lesions that damage detrusor nucleus but sparing pudendal nucleus | - Detrusor areflexia
 - hypertonic ext urin sphincter
 - large bladder urinary retention | Mixed type A bladder |
| Sacral cord lesions that spare detrusor nucleus but involves pudendal nucleus | - Flaccid ext urin sphincter
 - Detrusor spasticity
 - low bladder capacity | Mixed type B bladder |
| From sacral cord or sacral nerve root injuries | - Detrusor areflexia
 - Intact int urin sphincter
 - incontinence +/- UTI | Lower motor neuron bladder |
Pathophysiology

Figure 1: Anatomy and physiology of micturition with potential injury sites to urologic system (m: muscarinic receptor, α: alpha-adrenergic receptor, β: beta-adrenergic receptor).
Classification

- Variety, based on
 - Urodynamics, neurological criteria, bladder and urethral function
• History
 – Assess storage and voiding micturition phase
 – Past and present symptoms and disorders
 • Developmental, ObGyn, Diabetes, Hereditary, Neurological disease
 – Prior GU conditions/surgeries
 • Any insidious onset of non-traumatic neurologic bladder sym
 • Accidents and operations
 – Urinary symptom history
 • Storage and voiding functions of LUT
 – Present Functional Hx: Bowel, Sexual
 – Social Hx : smoking, Drug Hx
 – Neurological disorders
 – Red flags: pain, infection, haematuria and fever
Diagnosis (2)

• History
 – Voiding diary
 • Semi-objective
 • Number, volume, incontinence, and urge episodes
 • 24-hr diary (esp in women)
 • Over 3 consecutive days (increased reliability)
 • Diary content:
 – Voiding pattern
 – Fluid intake
 – Voiding issues
Diagnosis (3)

• History
 – Quality of life assessment
 • Visual analogue score (VAS) for symptom bother
 • Validated *Qualiveen* questionnaire (*spinal cord injury and multiple sclerosis*)
 • Generic tools: SF36
 • Specific tools, eg. for incontinence: I-QoL
Diagnosis (4)

• Clinical examination
 – Any physical and mental handicaps?
 – High neurological lesions: HYPOTENSION when changing posture
 • CAUTION: Autonomic dysreflexia – sudden and exaggerated autonomic response to stimuli in spinal cord injuries above T5-T6. HYPERTENSION can be life threatening
 – Test: sensations and reflexes of urogenital area
 – Test: sphincteric and pelvic floor function
Diagnosis: Clinical Examination (1)

completely as possible: (a) dermatomes of spinal cord levels L2-S4; (b) urogenital and other reflexes in the lower spinal cord.
Table 3.2: Neurological items to be specified

<table>
<thead>
<tr>
<th>Sensations S2-S5 (both sides)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence (increased/normal/reduced/absent)</td>
<td></td>
</tr>
<tr>
<td>Type (sharp/blunt)</td>
<td></td>
</tr>
<tr>
<td>Afflicted segments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reflexes (increased/normal/reduced/absent)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbocavernous reflex</td>
<td></td>
</tr>
<tr>
<td>Perianal reflex</td>
<td></td>
</tr>
<tr>
<td>Knee and ankle reflexes</td>
<td></td>
</tr>
<tr>
<td>Plantar responses (Babinski)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal sphincter tone</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence (increased/normal/reduced/absent)</td>
<td></td>
</tr>
<tr>
<td>Voluntary contractions of anal sphincter and pelvic muscles (increased/normal/reduced/absent)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prostate palpation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descensus (prolapse) of pelvic organs</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Clinical Examination

- Neurological
- Mechanical
- Cognition
- Hand-strength and coordination
- Joint contracture
- Mobility
- Sexuality
Diagnosis

• Urodynamics
 – Objective but invasive assessment
 – Preparation
 • Autonomic dysreflexia: check BP regularly
 • Assess maximum anaesthetic bladder capacity
 • Rectal ampulla empty
 • Stop drugs that may influence LUT function (48 hrs)
 – Caveats
 • Beware of artefacts
 • Quality of recording and interpretation
 • Same session: repeat urodynamics
 • Report according to Int Continence Soc standard
Diagnosis

• Components of Urodynamics
 – Free uroflowmetry and PVR volume
 • Initial impression’
 – Filling cystometry
 – Detrusor leak point pressure (DLPP)
 – Pressure-Flow Study
 – Electromyography
 – Urethral pressure measurement
 – Ambulatory urodynamics
 – Provocative tests during urodynamics
 – Video-urodynamics (GOLD STANDARD)
 • Filling cystometry + Pressure-Flow study
Table 3.3: Typical findings in neuro-urological disorders

<table>
<thead>
<tr>
<th>Filling phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyposensitivity or hypersensitivity</td>
</tr>
<tr>
<td>Vegetative sensations</td>
</tr>
<tr>
<td>Low compliance</td>
</tr>
<tr>
<td>High-capacity bladder</td>
</tr>
<tr>
<td>Detrusor overactivity, spontaneous or provoked</td>
</tr>
<tr>
<td>Sphincter underactivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voiding phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detrusor underactivity or acontractility</td>
</tr>
<tr>
<td>Detrusor sphincter dyssynergia</td>
</tr>
<tr>
<td>Non-relaxing urethra</td>
</tr>
<tr>
<td>Non-relaxing bladder neck</td>
</tr>
</tbody>
</table>
Diagnosis

• Uro-neurophysiological tests (elective)
 – Electromyography (EMG) of pelvic floor muscles, urethral sphincter and/or anal sphincters
 – Nerve conduction studies (pudendal n.)
 – Reflex latency measurements (bulbocavernous and anal reflex arcs)
 – Evoked responses (clitoris/glans penis)
 – Sensory testing (bladder, urethra)
Diagnosis: Investigations

• Urinalysis
• Urine culture & sensitivity
• Serum urea/Creatinine
• Creatinine Clearance
• Incontinence quantification
• Urinary tract imaging
Management

• Treatment aims
 – Protect upper urinary tract
 – Improvement of urinary incontinence
 – Restoration of (or parts of) of LUT function
 – Improvement of QoL
Treatment

• Modalities of treatment
 – Non-invasive, Conservative treatment
 ➢ Assisted bladder emptying
 ➢ Lower urinary tract rehabilitation
 ➢ Drug therapy
 – Minimal invasive treatment
 – Surgical treatment
Non-invasive/Conservative (1)

• **Assisted Bladder Emptying**
 – Third party bladder expression (Crede)
 • Dangerous, not practised anymore
 – Valsalva voiding
 • Generates high pressure, dangerous
 – Triggered reflex voiding
 • Stimulated voiding of sacral/lumbar dermatomes (UMNL)
 • **Beware** of autonomic dysreflexia
 – Behavioural modification
 • Timed voiding (bladder training); lifestyle modification
 – Pelvic floor muscle exercises
 • Improve continence
 – Biofeedback
Non Invasive/Conservative (2)

• External appliances
 – Allows for social continence (collecting urine)
 ➢ Condom catheters for men
 ➢ Incontinence pads
 • Observe for infection risks
Non Invasive/Conservative (3)

• **Lower Urinary Tract Rehabilitation**
 – Aims to re-establish bladder function
 – Regain voluntary control over LUTD
 – Electrical or magnetic stimulation
 – Concept: pudendal nerve stimulation inhibits micturition reflex/detrusor contraction
 – *Little data published*

• Types:
 – Peripheral temporary electrostimulation
 – Intravesical electrostimulation
 – Chronic peripheral pudendal stimulation
 – Repetitive transcranial magnetic stimulation
Non Invasive/Conservative (4)

• Drug therapy – combination therapy more useful than monotherapy

Detrusor OVERACTIVITY

• Antimuscarinic
 – First line BUT avoid if stress urinary incontinent
 – Treats neurogenic detrusor overactivity
 – Improves bladder compliance and reduces OA
 – Neurogenic patients higher dose but compliance
 – Oxybutinin chloride, trospium chloride, *tolterodine* tartrate [established, for long-term]
 – Darifenacin, Solifenacine (in MS, in SCI), *Fesoterodine* [newer]
 – SE: dry-mouth (so, give transdermal/intravesical) or tolterodine
Non Invasive/Conservative (5)

• Phosphodiesterase inhibitors (PDE-5I)
 – Promising early results (for DO)
 – Acts on urothelium and afferent nerve

• Adjunctive desmopressin – nocturnal enuresis

Detrusor UNDERACTIVITY

• Cholinergics (bethanechol chloride, distigmine bromide)
 – No evidence on efficacy

Decreasing Bladder Neck Resistance

• Alpha blocker : \(\downarrow\) bladder outlet resistance, autonomic dysreflexia

Increasing Bladder Outlet Resistance

• No efficacious drug
Minimally Invasive (1)

• Catheterisation

 – Gold standard
 – *Intermittent*, clean/aseptic, self- or 3rd party
 – Indicated in:
 • Detrusor underactivity or acontractility
 • DO (*with controlled overactivity*)
 – Frequency: 4-6 times/day. For sterile IC, optimum 5 times/day
 – Catheter size: 12-16 F
 – Bladder volume at catheterisation: < 500ml
 – Caution: trauma, urinary tract infection
 – *Indwelling* catheter poses ↑ risk of infection
 • Silicon catheter better (less encrustation, no latex allergy)
Minimally Invasive (2)

• **Intravesical drug treatment**

 – Reduces DO symptoms
 – Reduces side effects of antimuscarinics
 – Allows more drug to be sequestered in bladder
 – Vallinoids, capsaicin, resiniferatoxin
 • Desensitises C-fibres, reduces DO for a few months
 • Dosage: 1-2 mmol capsaicin in 100ml 30% alcohol, or 10-100 nmol resiniferatoxin in 100ml 10% alcohol in 30min
 • Resiniferatoxin superior to capsaicin
 • But inferior to botulinum toxin A injections for detrusor
Minimally Invasive (3)

- **Intravesical electrostimulation**

 - Enhances bladder filling sensation and void urge
 - Restores volitional control of detrusor
 - Regime: daily stimulation 90 min with 10 mA pulses of 2 ms duration, at 20Hz frequency ≥ 1 wk
 - Requisites: detrusor muscle intact, afferent pathway from detrusor to brain intact (hence for peripheral nerve lesions)
 - Efficacy: equivocal
Minimally Invasive (4)

• *Botulinum toxin injections in the bladder*

 – Long lasting (reversible) chemical denervation (lasting 9 mths)
 – Mapped injections over detrusor
 – Repeated injections without loss of efficacy
 • Histology: no ultrastructural changes post injection
 – S/E: generalised muscle weakness
Minimally Invasive (5)

- **Bladder neck and urethral procedures**
 - Aim: protect upper urinary tract
 - Chemical denervation of sphincter
 - Botulinum toxin sphincter injection
 - Most effective in reducing neurogenic detrusor overactivity
 - Needs repeated injections, efficacious, few adverse effects
 - Balloon dilatation
 - No longer recommended
 - Sphincterotomy
 - Standard treatment: detrusor sphincter dyssynergia
 - Staged incision to maintain reasonable continence
 - Laser advantageous; efficacious, no serious adverse effects
 - Bladder neck incision
 - For secondary changes at bladder neck (fibrosis)
 - Not useful for hypertrophied detrusor
 - Urethral Stent
 - This is comparable to sphincterotomy but costly and re-interventions may be needed
 - Increasing bladder outlet resistance
 - Relatively early loss of continence
Surgical Treatment (1)

- Surgery enhancing detrusor storage
 - Bladder augmentation
 - Detrusor myectomy
- Surgery controlling detrusor emptying
 - Denervation and sacral neuromodulation
 - Urinary diversion
- Bladder sphincter procedure to enhance emptying
 - Sphincterotomy and Bladder Neck Incision
 - Urethral stents
 - Balloon dilatation
 - Botulinum toxin injection to sphincter
- Bladder sphincter procedure to restrict emptying
 - Artificial urethral sphincter
 - Sling
Surgical Treatment (2)

- **Urethral and Bladder Neck Procedures – to RESTRICT bladder emptying**
 - Sphincteric incontinence suitable only when detrusor activity can be controlled without reflux
 - Post-procedure may result in intermittent catheterisation
 - Types:
 - *Urethral sling: female with ability to self-catheterise*
 - In neurogenic DO with low valsalva leak points (*Spinal Cord Injury*)
 - Infection and erosion rates higher in neurogenic bladders
 - A 66-83% success rate for bulbourethral sling. Long-term outcomes??
 - **Artificial urethral sphincter**
 - GOLD STANDARD for sphincteric incontinence
 - A 75-95% social continence rate at 3-year follow-up
 - Option for catheter free voiding if patient desires so
 - If bladder has low compliance, augmentation cystoplasty is added on
 - Contraindications: urethral diverticula/strictures, bladder stones, VUR, urethra/bladder tumors
 - 35% reintervention rate; device infection (2-3%) and cuff erosion may occur
 - **Functional sphincter augmentation** (gracilis muscle to bladder neck & proximal urethra) – electrostimulation
 - **Bladder neck and urethra reconstruction**: for children with bladder extrophy
Surgical Treatment (3)

- **Urethral and Bladder Neck Procedures – to ENHANCE bladder emptying**
 - Botulinum toxin sphincter injection – detrusor sphincter dyssynergia
 - Balloon dilatation – no reports since 1994
 - Sphincterotomy – staged incision, laser, repeated, no severe side effects
 - Bladder neck incision – only for secondary bladder neck changes (fibrosis)
 - Stents – comparable to sphincterotomy, shorter surgery and hospital stay, but cost
Surgical Treatment (4)

• **Detrusor myectomy (auto-augmentation)**
 – Dissection of 20% detrusor muscle leaving mucosa intact, around the umbilicus
 – Reduces DO & intravesical pressure, improves low detrusor compliance
 – Low morbidity and less invasive

• **Denervation, deafferentation, neurostimulation, neuromodulation**
 – Sacral rhizotomy (sacral deafferentation)
 • Reduces DO; as an adjuvant to sacral anterior root stimulation
 – Sacral nerve stimulation or neuromodulation
 • Stimulates afferent nerve, reduces DO
 – Sacral anterior root stimulation (for complete lesions only)
 • Stimulation amplitude is above pain threshold
 • Both detrusor and urethral sphincter are stimulated
Surgical Treatment (5)

• **Bladder covering striated muscle**
 – Stimulated or volitional contraction of striated muscle covering the bladder: *this is still experimental*
 – Lattisimus dorsi, rectus abdominis

• **Bladder augmentation or substitution**
 – Generally, reduces bladder compliance, capacity and reduces pressure effect of DO
 – Only chosen if all other less-invasive measures fail
 – Bladder augmentation (eg. clam cystoplasty), also increases bladder capacity. Uses ileum or ileocaecal segment.
 • Success rate 90%. Complication rate 40%
 – Bladder substitution indicated for severely thicken and fibrotic bladder wall
Surgical Treatment (6)

• **Urinary tract diversion**
 – Considered when other measures fail
 – Types:
 • ** Continent diversion**
 – First choice
 – Considerations: long-term catheterisation patient, limited dexterity
 – Complications: leakage or stenosis (mainly umbically placed)
 – Outcome: Short-term continence rate 80%
 • **Incontinent diversion**
 – For failed catheterisation
 – For bed-ridden/wheelchair bound/intractable incontinent
 – Ileal segment
 – Outcome: Poor long-term results
 • **Undiversion**
 – Converting an incontinent to a continent diversion
 – Patient compliance
Specific Issues to Address

• **Urinary Tract Infection**
 – Asymptomatic bacteriuria and long-term antibiotics not recommended
 – Recurrent UTI: optimise neuro therapy and remove foreign bodies
 – UTI prophylaxis: individualised

• **Vesicoureteric Reflux**
 – Subtrigonal injection with bulking agent (65% success)

• **Sexual (Dys)function and Fertility**
 – Erectile Dysfunction: PDE-5I is first line. Intercavernous injections are second line. Mechanical device and prostheses are for selected patients
 – Men: Sperm retrieval in spinal cord injury and counsel regarding autonomic dysreflexia (for lesion above T6)

• **Quality of Life**
Follow-Up

- Unstable disease, variable symptoms
- Intervals of follow-up should be < 1-2 years
- Risk stratification guides follow-up frequency
- Components:
 - Physical examination - yearly
 - Urinalysis - yearly
 - Assessment for upper urinary tracts - 6 mthly
 - Urodynamics: at baseline and regular intervals
References

• Dorsher PT and McIntosh PM. Neurogenic Bladder. *Advances in Urology* 2012. doi.10.1155/2012/816274 [accessed on 12 Apr 2014]

Thank you